

Integration of GaN Supply Modulators and RF Power Amplifiers

Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics Center (CoPEC), ECEE Department University of Colorado - Boulder

Yuanzhe Zhang¹, Dr. Miguel Rodriguez^{1*}, Andrew Zai², Dr. David Sardin², Prof. Zoya Popovic²

¹CU-Boulder Colorado Power Electronics Center (CoPEC): drain supply modulators ²CU-Boulder microwaves research group: RFPAs and transmitter systems ¹*now with AMD

Integrated Power Conversion and Power Management

next generation technology for emerging business opportunities

new technologies new applications new markets

4G base station example

Each site has between 3 and 12 transmitters!

ந

System Efficiency Improvement Objectives

- Higher reliability
- Lower system cost
- +In mobile platforms: battery life

Requires systems approach, co-design of architecture, baseband, RF, and power electronics

•

Supply Modulation Approach

9

 J. Hoversten, S. Schafer, M. Roberg, M. Norris, D. Maksimovic, and Z. Popovic, "Codesign of PA, Supply, and Signal Processing for Linear Supply-Modulated RF transmitters," IEEE Trans. Microw. Theory Tech. 2012

G,

5.4 x 3.8 mm in GaN-on-SiC RF process

10W, X-Band RFPA [2, 3, 4]

100MHz

switching

ET amp,

20MHz

BW [8, 9]

D-mode GaN-on-SiC 0.15 μ m RF process CoPEC

- Intended for RF applications, e.g. RFPA's, MMIC's
- Depletion-mode, n-type only, threshold voltage $V_T \approx -3.5$ V
- Device size (gate periphery) $W = N \cdot W_g$
 - N = number of gate fingers

3.8 x 3.2 mm

- Two-stage X-band (10 GHz) power amplifier MMIC
- Class-E output stage: four 0.9 mm devices
- Gain: 20 dB, bandwidth: 1.6 GHz

output power at different drain supply voltages

 Max PAE (%)
 59.9

 Max P_{out} (W)
 13.2

 Gate size (mm)
 3.6

 W/mm
 3.68

[3] S. Schafer, M. Litchfield, A. Zai, C. Campbell, Z. Popovic, "X-Band MMIC GaN Power Amplifiers Designed for High-Efficiency Supply-Modulated Transmitters," *IEEE MTT IMS* 2013, Seattle, WA, June 2013.

Very high frequency switching supply modulator

- Dynamic capabilities suitable for envelope tracking application
 - High bandwidth (20 MHz LTE envelope) and high efficiency (>80%) must be met simultaneously
- Possibilities for SOC integration in the same GaN-on-SiC RF process

•

		R on,s	$C_{oss,s}$	$C_{iss,s}$	$Q_{g,s}$	
	Simulated	2.1 Ω ·mm	0.4 pF/mm	1.5 pF/mm	8.8 pC/mm	
Cor	nparison of 4	FOM =	FOM = $R_{on.s}Q_{g.s}$ [pVs]			
Silicon MOSFET (e.g. Si 2318) 148						
GaN-on-Si (e.g. EPC 8008) 58						
RF	GaN-on-SiC p		19			

- Low device FOM
- Zero-voltage-switching (ZVS)
- Gate-drive integration

High-efficiency at very high switching frequency

100 MHz Integrated GaN PWM Buck Converter CoPEC

C

100 MHz Integrated GaN PWM Buck Converter

<u>Key challenge</u>: level-shifting high-side gate driver to support very high frequency (100 MHz) PWM control

•

Standard active pull-up driver

Chip layout: $2.4 \times 2.3 \text{ mm}$

Half-bridge power stage $Q_{HS}/D_{HS}, Q_{LS}/D_{LS}$

High-side gate driver Q_1, R_1, Q_2

Low-side gate driver Q_3, R_2, Q_4

•

HIGH

Modified active pull-up driver^[8,9]

Chip micro-photograph: $2.4 \times 2.3 \text{ mm}$

Half-bridge power stage $Q_{HS}/D_{HS}, Q_{LS}/D_{LS}$

Half-side gate driver Q_1, R_1, Q_2

Low-side gate driver Q_3, R_2, Q_4

ЬĻ

Low driver power loss, and no bootstrap capacitor required

•

CoPEC

Experimental prototype CoPEC

- 10-200 MHz PWM switching, ZVS operation (QSW) ٠
- Control: Altera Stratix IV FPGA, 125 ps resolution ٠
- Chip package: 20-pin 4x4mm QFN package ٠
- Filter components
 - Low-ESR capacitors
 - High-Q air-core inductor (47 nH)

 2.4×2.3 mm integrated buck switching converter chip

Efficiency as a function of switching frequency

Experimental results at 100 MHz switching frequency

- P_{out} up to 7 W static
- ~ 0.2 W driver loss
- 91% peak power-stage efficiency

ЬĻ

Application: envelope tracking supply for RFPAs

- Target signal: 20 MHz bandwidth LTE envelope
- 4th order filter, 25 MHz cut-off frequency
- 100 MHz switching frequency

L_1	C_2	L_3	C_4	R_L	Vin	P out,pk
28 nH	820 pF	307 nH	270 pF	30 Ω	20 V	10 W

0

Envelope tracking experimental results

- 20 MHz LTE envelope, 100 MHz switching frequency
- Power stage efficiency: 83.7%
- Total efficiency: 80.1% (including on-chip driver loss)
- Normalized RMS error: 5.4%

Path to very high bandwidth (500MHz) tracking

Two-phase buck converter chip

FOURTH-ORDER FILTER DESIGNS FOR TWO PHASE CONVERTERS.

0

VeSP = *signal split* + *DPD*

Composite power-added efficiency: 53.6%

ACPR: -28 dB

- Integrated switching converters in GaN-on-SiC process
- 20 V, 10 W peak, >90% peak efficiency, 100 MHz switching
- Accurate tracking of 20 MHz LTE envelope, 85% overall efficiency
- Path to ET RF transmitter SOC integration with up to 500 MHz envelope bandwidth capability in GaNon-SiC process

ET Transmitter on a Chip

10W, X-Band RFPA [2, 3, 4]

Acknowledgments

- Dr. Chuck Campbell, John Hitt and Maureen Kalinski, TriQuint (now Qorvo)
- DARPA MPC program

- [1] J. Hoversten, S. Schafer, M. Roberg, M. Norris, D. Maksimovic, Z. Popovic, "Co-design of PA, Supply and Signal Processing for Linear Supply-Modulated RF Transmitters," *IEEE Trans. Microwave Theory and Techniques, Special Issue on PAs*, pp. 210-220, April 2012.
- [2] M. Litchfield, M. Roberg, Z. Popovic, "A MMIC/hybrid high-efficiency X-band power amplifier, *Power Amplifiers for Wireless and Radio Appl. (PAWR), 2013 IEEE Topical Conf.*, pp.10,12, Jan. 2013.
- [3] S. Schafer, M. Litchfield, A. Zai, C. Campbell, Z. Popovic, "X-Band MMIC GaN Power Amplifiers Designed for High-Efficiency Supply-Modulated Transmitters," *IEEE MTT IMS 2013*, Seattle, WA, June 2013.
- [4] A. Zai, S. Schafer, D. Sardin, Y. Zhang, D. Maksimovic, Z. Popovic, "High-Efficiency X-Band MMIC GaN Power Amplifiers with Supply Modulation," IEEE IMS 2014
- [5] D. Sardin, Z. Popovic, "Decade Bandwidth High-Efficiency GaN VHF/UHF Power Amplifier," IEEE MTT IMS 2013, Seattle, WA, June 2013
- [6] D. Sardin, Z. Popovic, "High Efficiency 15-500MHz Wideband Cascode GaN HEMT MMIC Amplifiers," IEEE IMS 2014.
- [7] M. Rodriguez, Y. Zhang, and D. Maksimovic, "High-frequency PWM buck converters using GaN-on-SiC HEMTs," *IEEE Trans. Power Electron.*, vol. 29, no. 5, pp. 2462–2473, 2014.
- [8] Y. Zhang, M. Rodriguez, and D. Maksimovic, "High-frequency integrated gate drivers for half-bridge GaN power stage," in Control and Modeling for Power Electron. (COMPEL), 2014 IEEE 15th Workshop on, 2014.
- [9] Y. Zhang, M. Rodriguez, and D. Maksimovic, "100 MHz, 20 V, 90% efficient synchronous Buck converter with integrated gate driver," *in Proc. IEEE Energy Convers. Congr. Expo.*, 2014.
- [10] M. Norris, D. Maksimovic, "10 MHz large signal bandwidth, 95% efficient power supply for 3G-4G cell phone base stations," IEEE APEC 2012.